
 - 1 -

Appendix D: Error Detection 1

KaBOB’s integrated biological model and its commitment to data provenance provide 2

a unique opportunity for error detection when compared to other data integration 3

systems. Errors can be detected by querying for concepts or links between concepts 4

that should not exist. Once identified their provenance can be traced, and a solution 5

can be identified. This capability is a critical aspect to the rule writing process and has 6

been successfully used to identify and repair logic errors in rules. Errors in the source 7

data can also be detected. In these cases it is often possible to adjust relevant rules can 8

to correct for these problems. More rare are errors in a file parser causing the 9

generation of erroneous RDF. 10

Disjoint Types 11

One straightforward thing to query for is to ensure that biomedical concepts do not 12

exist that are of disjoint types. This can be accomplished with some targeted SPARQL 13

queries, however, even more leverage could be gained here from the use of OWL 14

reasoners, which is a source of future work. Things that can be queried for include 15

ensuring entities are distinct from processes and that DNA and proteins are distinct 16

from each other, which is shown in the following query: 17

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 18
PREFIX obo: <http://purl.obolibrary.org/obo/> 19
 20
SELECT ?bio WHERE { 21
 22
 ?bio rdfs:subClassOf* obo:SO_0000352 . #DNA 23
 ?bio rdfs:subClassOf* obo:CHEBI_36080 . #protein 24
} 25

Identifier Collapse 26

Since KaBOB resolves identity across data sources by clustering sets of identifiers, it 27

is important to detect if a set of identifiers has accidentally grown too large, causing 28

what should be several distinct biomedical entities to collapse into a single identifier. 29

This can be hard to detect prior to the identifier sets being generated. The ability to 30

 - 2 -

inspect the consequences of these identifier mappings is an important advantage 31

provided by KaBOB, as opposed to systems that require query writers to manually 32

transverse these mappings themselves (as is the case with the current state of the art in 33

biomedical pipeline building, or when using a system such as Bio2RDF). 34

One mode of identifier collapse is when a data source does not uniquely map to 35

identifiers in another source, as we detected in DrugBank. These erroneous mappings 36

resulted in 300 errors where two or more DrugBank identifiers were associated with 37

the same external identifier. Since a transitive closure is computed over identifier 38

mappings it is also possible to detect distant interactions not otherwise noticeable. For 39

example, if there are mappings from source A to source B, B to source C, and then C 40

to A, it is possible that the mappings do not agree and instead of tight loops of 41

agreement being formed there are disagreements that when transitively closed cause 42

too many identifiers to be merged. If you only looked at all the mappings in and out of 43

a source those disagreements would not be seen. 44

The first naïve approach to detecting collapse is to look for sets of identifiers that 45

include multiple identifiers from the same data source. However, since many data 46

sources have redundant and deprecated identifiers, for example UniProt, this will not 47

universally hold. Instead we look at the primary identifier fields for many of the data 48

sources. Since these should all point to distinct biomedical entities, we can check for 49

sets that contain two primary identifiers from UniProt, or from DugBank, etc. An 50

example of this kind of error checking query looks like the following: 51

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 52
PREFIX obo: <http://purl.obolibrary.org/obo/> 53
PREFIX kiao: <http://kabob.ucdenver.edu/iao/> 54
PREFIX iaodrugbank: <http://kabob.ucdenver.edu/iao/drugbank/> 55
 56
SELECT ?dbId1 ?dbId2 ?bio WHERE { 57
 58
#look for the first DrugBank ID – primary ID field 59
?fv1 kiao:hasTemplate 60
 iaodrugbank:DrugBankDrugRecord_drugBankIdDataField1 . 61

 - 3 -

?fv1 obo:IAO_0000219 ?dbId1 . #denotes 62
 63
 ?dbId1 obo:IAO_0000219 ?bio . #denotes 64
 ?dbId2 obo:IAO_0000219 ?bio . #denotes 65
 66
 FILTER (?dbId1 != ?dbId2) #make sure they are different 67
 68
#look for the second DrugBank ID – primary ID field 69
 ?fv2 obo:IAO_0000219 ?dbId2 . #denotes 70
 ?fv2 kiao:hasTemplate 71
 iaodrugbank:DrugBankDrugRecord_drugBankIdDataField1 . 72
} 73
 74

From this query we were initially able to detect identifier collapse. When we 75

traced back the provenance we identified that DrugBank was non-uniquely mapping 76

to external identifiers. These were being extracted using this rule: 77

`{:name "drugbank-drug-exact-mapping-assertion" 78
 :head ((?/dbice skos/exactMatch ?/otherice)) 79
 :body 80
 ((?/fv0 kiao/hasTemplate 81
 iaodrugbank/DrugBankDrugRecord_drugBankIdDataField1) 82
 (?/fv0 obo/IAO_0000219 ?/dbice) 83
 (?/record obo/has_part ?/fv0) 84
 85
 (?/record obo/has_part ?/externalfv) 86
 (?/externalfv kiao/hasTemplate 87
 iaodrugbank/DrugBankDrugRecord_externalIdentifiersDataField1) 88
 (?/externalfv obo/IAO_0000219 ?/otherice)) 89
} 90
 91

That rule was updated to remove the unreliable identifiers from consideration and 92

KaBOB was able to be regenerated without these entities collapsing. The updated rule 93

looks like the following: 94

`{:name "drugbank-drug-exact-mapping-assertion" 95
 :head ((?/dbice skos/exactMatch ?/otherice)) 96
 :body 97
 ((?/fv0 kiao/hasTemplate 98
 iaodrugbank/DrugBankDrugRecord_drugBankIdDataField1) 99
 (?/fv0 obo/IAO_0000219 ?/dbice) 100
 (?/record obo/has_part ?/fv0) 101
 102
 (?/record obo/has_part ?/externalfv) 103
 (?/externalfv kiao/hasTemplate 104
 iaodrugbank/DrugBankDrugRecord_externalIdentifiersDataField1) 105
 (?/externalfv obo/IAO_0000219 ?/otherice) 106
 107
 ;;check to see if that fv is in another record 108
 (:optional ((?/record2 obo/has_part ?/externalfv) 109
 (:not (= ?/record2 ?/record)))) 110
 (:not (:bound ?/record2))) 111
} 112
 113

 - 4 -

A query to get a list of the detectable mis-mapped identifiers and its results is in 114

Appendix E. 115

Another form of identifier collapse we have seen was due to the RDF file parsers 116

accidentally truncating RefSeq identifiers. In this case all RefSeq identifiers were 117

accidentally written as only their first few digits. This caused the majority of the 118

entire human proteome to collapse to a single biomedical entity in KaBOB. This was 119

immediately detected and then resolved. 120

Taxon Disagreement 121

Since we have taxon information for all the species-specific data in KaBOB, errors in 122

the biomedical model can also be detected by looking for when entities from differing 123

species are connected in inappropriate ways. The first most obvious thing to check for 124

is a single biomedical entity being part of two disjoint taxa. Note that it is perfectly 125

acceptable for a biomedical concept to have multiple taxon assertions, for example all 126

the parent taxon classes are necessarily entailed by a child assertion, e.g., all Homo 127

sapiens (NCBI Taxon 9606) are also members of Mammalia (NCBI Taxon 40674). A 128

query for an entity in two disjoint taxa is the following: 129

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 130
PREFIX owl: <http://www.w3.org/2002/07/owl#> 131
PREFIX obo: <http://purl.obolibrary.org/obo/> 132
 133
SELECT ?dna ?tax1 ?tax2 134
WHERE { 135
 ?dna rdfs:subClassOf obo:SO_0000352 . #DNA 136
 ?dna rdfs:subClassOf ?taxonrestriction1 . 137
 ?taxonrestriction1 owl:onProperty obo:RO_0002162 . #in_taxon 138
 ?taxonrestriction1 owl:someValuesFrom ?tax1 . 139
 140
 ?dna rdfs:subClassOf ?taxonrestriction2 . 141
 ?taxonrestriction2 owl:onProperty obo:RO_0002162 . #in_taxon 142
 ?taxonrestriction2 owl:someValuesFrom ?tax2 . 143
 144
 FILTER (?tax1 != ?tax2) . 145
 FILTER NOT EXISTS { ?tax1 rdfs:subClassOf* ?tax2 . } . 146
 FILTER NOT EXISTS { ?tax2 rdfs:subClassOf* ?tax1 . } . 147
} 148
 149

 - 5 -

The source data that KaBOB is derrived from is quite consistent in this regard and 150

only six errors are propigated into KaBOB from erroneous data. These include one 151

protein that is confused between mouse and rat, and five proteins that are 152

simultaneously in two sibling yeast strains. The following are those results. 153

obo:NCBITaxon_10090 obo:NCBITaxon_10116 (mouse rat) 154
 kbio:BIO_e5838794206c4357c4fc0887ff9ef8f4 155
obo:NCBITaxon_10090 obo:NCBITaxon_10116 (yeast) 156
 kbio:BIO_c8742d154afdfecae05bbf42544456f8 157
 kbio:BIO_a7f26ae6f4a59610e55d080a894fb606 158
 kbio:BIO_4998abaafcf5a986229945dbfaef54f1 159
 kbio:BIO_19c1adaabcd380dece3abeca9b4cde54 160

 161

Entities also stand in relationship to each other, for example, gene products (e.g., 162

proteins) are coded for by genes. Taxon information can also be leveraged here to 163

look for misalignments by checking for a gene product from one taxa having a gene 164

from a disjoint taxa as its template. A query that looks for that is the following: 165

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 166
PREFIX owl: <http://www.w3.org/2002/07/owl#> 167
PREFIX obo: <http://purl.obolibrary.org/obo/> 168
 169
#retrive dna, gene-product, dna taxa, gene-product taxa 170
SELECT ?dna ?gptaxon2 ?tax1 ?tax2 171
WHERE { 172
 #DNA/gene in a taxa 173
 ?dna rdfs:subClassOf obo:SO_0000352 . #DNA 174
 ?dna rdfs:subClassOf ?taxonrestriction1 . 175
 ?taxonrestriction1 owl:onProperty obo:RO_0002162 . #in_taxon 176
 ?taxonrestriction1 owl:someValuesFrom ?tax1 . 177
 178
 #get the gene or gene product abstraction for that gene 179
 ?dna rdfs:subClassOf* ?gorgporv . 180
 ?gorgporv rdf:type kbio:GeneSpecificGorGPorVClass . 181
 182
 #look at all the taxa of the member gene products 183
 ?gptaxon2 rdfs:subClassOf* ?gorgporv . 184
 ?gptaxon2 rdfs:subClassOf ?taxonrestriction2 . 185
 ?taxonrestriction2 owl:onProperty obo:RO_0002162 . #in_taxon 186
 ?taxonrestriction2 owl:someValuesFrom ?tax2 . 187
 188
 #filter out those that are allowed 189
 FILTER (?tax1 != ?tax2) . 190
 FILTER NOT EXISTS { ?tax1 rdfs:subClassOf* ?tax2 . } . 191
 FILTER NOT EXISTS { ?tax2 rdfs:subClassOf* ?tax1 . } . 192
} 193
 194

